Configuration Options

da01a baratron devicenet 0.1-1000 torr heated capacitance manometer DA01B Absolute Capacitance Manometer, 0.1-1,000 Torr, DeviceNet


  • Type
    Vacuum/pressure Transducer
  • Measurement Type
  • Sensor Temperature
    Unheated or controlled to 45°C, 80°C or 100°C
  • Full Scale Pressure Ranges
    0.1, 0.25,1, 2, 10, 20, 100, 200, 500, and 1000 Torr
  • Accuracy
    Unheated: 0.25% Reading
    45°C Models: 0.12% Reading for 1-1000 Torr, 0.15% Reading for<1 Torr
    80°C and 100°C Models: 0.25% Reading for 1-1000 Torr, 0.50% Reading for<1 Torr
  • Communication Protocol
  • Analog Output
    0-10 VDC into >10KΩ load
  • Analog Connector
    9-pin female D-subminiature
  • Digital Connector
    5-pin sealed micro-style male bayonet with anti-rotation device
  • Span Temperature Coefficient
    Unheated Models: 0.04% Reading/°C
    Heated Models: 0.02% Reading/°C
  • Volume
    6.3 cc
  • Overpressure Limit
    45 psia (310 kPa)
  • Exposed Materials
    Inconel and Incoloy nickel alloys
  • Power Requirements
    Unheated Models: 11-25 VDC @≤5 watts
    45°C Models: 18-25 VDC @≤15 watts
    80°C & 100°C Models: 18-25 VDC @≤25 watts
  • Level of Filtering
    Adjustable via user software
  • Data Rate Switch
    4 positions: 125, 250, 500, PGM
  • Network Message Control
    Master/slave information flow
  • Network Size
    64 nodes maximum
  • Network Topology
    Linear (trunkline/dropline) power and signal on same network cable
  • Compliance


Baratron® Capacitance Manometer Technology

Capacitance manometers are electro-mechanical gauges that can measure both pressure and vacuum. The capacitance gauge translates a pressure-modulated movement in a thin diaphragm into an electrical signal proportional to the pressure. The pressure sensor is the thin diaphragm that is exposed to the pressure or vacuum being measured via the inlet tube. An electrode is mounted in the reference cavity behind the diaphragm. Pressure differences between the process and the reference cavity deflect the diaphragm slightly, changing the distance between it and the electrode. Variations in this distance produce variations in the capacitance between the diaphragm and the electrode creating an electrical signal that is proportional to the pressure change. Since differences in the capacitance signal are produced by physical changes within the manometer and not by changes in the gas properties, pressure measurements by the capacitance manometer are independent of the composition of the gas being measured.

Gas independent pressure measurement with a Baratron® capacitance manometer. Schematic shows the internal components and functional zones.

Percent of Reading Accuracy

Accuracy is specified as a percent of Reading, not Full Scale, as seen in some of the lower performance devices. Percent of Reading accuracy provides you with an even more accurate output signal in the lower scale of the pressure range, where it is needed most.

Internally Heated to 45°C, 80°C or 100°C

These capacitance manometers are temperature controlled to 45°C, 80°C or 100°C for improved accuracy. Unheated versions are exposed to ambient temperature variations which can degrade the sensor accuracy. These devices have the sensor enclosed in a volume that is maintained at a constant temperature above ambient. This solution improves the manometer’s accuracy and repeatability and lowers instrument drift by reducing or eliminating process contamination within the manometer. Heated manometers are recommended for applications that require maximum accuracy and repeatability, operate above ambient temperature and for those processes that employ hot gases.

The pressure sensor is located inside a 45°C, 80°C or 100°C constant temperature oven for improved pressure measurement accuracy.

Absolute Pressure Measurement

These Baratron® pressure transducers are referenced to vacuum for absolute pressure measurement. Applications include: vacuum furnaces, freeze-drying of fruits and vegetables, gas lasers, automotive component testing, bottle coatings, and vacuum distillation.

Inconel® and Incoloy® Construction Wetted Surfaces

These pressure transducers feature Inconel® and Incoloy® nickel alloy construction of the pressure sensor allowing it to operate without damage in virtually any chemical environment, including halogens, deionized water and steam, and ozone. The sensor is fully welded with no intermediate brazing or joining materials.

0 to 10 VDC Proportional Analog Output

These Baratron® capacitance manometers feature a high-level 0-10 VDC analog output signal that is linear with pressure. This analog output can be interfaced with an MKS pressure controller, an MKS power supply/display instrument, or any instrument that meets these requirements.

DeviceNet™ Digital Communications

These capacitance manometers feature DeviceNet™ digital communications allowing the pressure to be measured, digital trip points and hysteresis to be set, units to be selected (Torr, Pa, mbar, in H2O, psi), zero to be set, factory defaults reset, transducer trip point status to be monitored, and user tags and device address to be changed remotely over DeviceNet. The DeviceNet communications and main power are fed through a bayonet-style 5-pin connector on the top of the sensor enclosure.

Need help?

Contact an Applications Specialist by sending us an email