Ozone Conversion Data and Tables

••mks

Ozone is an environmentally friendly alternative to many chemical processes. It has a high redox potential, can be generated at the point of use and is easily converted back to oxygen. Since ozone is an unstable molecule, ozone has to be generated on-site. A common technique is electrical discharge, sometimes also called silent electrical discharge. By applying high-frequency alternating voltage to oxygen gas, the oxygen molecules (O_2) will be split into atoms. Ozone (O_3) is formed by recombination of atomic and molecular oxygen.

Physical Properties of Ozone and Oxygen				
Property	Ozone (O₃)	Oxygen (O ₂)		
Color	Gas: blue colored Gas: colorless Dissolved in water: purple blue in concentration > 20 ppm			
Molecular weight, g/mol	48	32		
Boiling Point, °C (K)	-112 (161.3)	-183 (90)		
Density, kg/m ³	2.144	1.429		
Solubility in water at 0°C	0.64	0.049		
Electrochemical potential, V	2.08 (Hydroxyl radical OH° 2.80)	1.23		

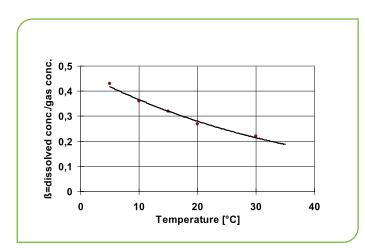
Gaseous		Dissolved In Water (pH 7)	
half life time	at Temp	half life time	at Temp
~3 months	-50°C	~30 minutes	15°C
~18 days	-35°C	~20 minutes	20°C
~8 days	-25°C	~15 minutes	25°C
~3 days	20°C	~12 minutes	30°C
~1.5 hours	120°C	~8 minutes	35°C
~1.5 seconds	250°C		

These values are based on thermal composition, no wall effects or other catalytic effects are considered.

Solubility of Ozone in Fluids

Henry's Law: The maximum achievable balancing concentration of gas in fluids

$$C_{\text{Liquid}} = C_{\text{Gas}} \times \beta_{\text{(Temperature)}} \times P_{\text{gas}}$$


with

C_{Liquid}: dissolved concentration in liquid

 C_{Gas} : gas concentration

B: Bunsen coefficient (solubility), temperature dependent

P_{Gas}: gas pressure

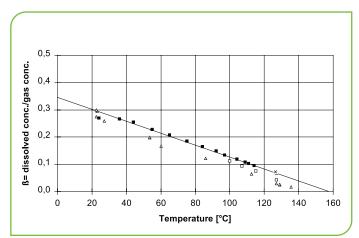


Figure 2 - Ozone solubility in concentrated sulfuric acid as a function of temperature (laboratory data)

••mks

Weight - %	Volume - %	Concentration	Productivity at 1 I/min Gas
1.0%	0.7%	14.3 g/m ³	0.86 g/hr
2.0%	1.3%	28.7 g/m³	1.72 g/hr
3.0%	2.0%	43.3 g/m³	2.60 g/hr
3.5%	2.3%	50.0 g/m³	3.00 g/hr
4.0%	2.7%	57.9 g/m³	3.47 g/hr
5.0%	3.4%	72.6 g/m³	4.36 g/hr
6.0%	4.1%	87.4 g/m³	5.24 g/hr
6.8%	4.7%	100.0 g/m³	6.00 g/hr
7.0%	4.8%	102.3 g/m ³	6.14 g/hr
8.0%	5.5%	117.3 g/m³	7.04 g/hr
9.0%	6.2%	132.5 g/m ³	7.95 g/hr
10.0%	6.9%	147.7 g/m³	8.86 g/hr
10.2%	7.0%	150.0 g/m³	9.00 g/hr
11.0%	7.6%	163.0 g/m³	9.78 g/hr
12.0%	8.3%	178.5 g/m³	10.71 g/hr
13.0%	9.1%	194.0 g/m³	11.64 g/hr
13.4%	9.3%	200.0 g/m³	12.00 g/hr
14.0%	9.8%	209.7 g/m ³	12.58 g/hr
15.0%	10.5%	225.4 g/m³	13.52 g/hr
16.0%	11.3%	241.3 g/m ³	14.48 g/hr
16.5%	11.7%	250.0 g/m ³	15.00 g/hr
17.0%	12.0%	257.3 g/m ³	15.44 g/hr
18.0%	12.8%	273.4 g/m ³	16.40 g/hr
19.0%	13.5%	289.6 g/m ³	17.38 g/hr
19.6%	14.0%	300.0 g/m ³	18.00 g/hr
20.0%	14.3%	305.9 g/m³	18.36 g/hr
21.0%	15.1%	322.4 g/m ³	19.34 g/hr
22.0%	15.8%	338.9 g/m³	20.34 g/hr
22.7%	16.3%	350.0 g/m ³	21.00 g/hr

T_o: 0 °C (273.15 K = 32 °F), P_o: 101325 Pa (1.013 bar = 14.7 psi = 760 mm Hg), absolute

conc $O_3(T_{p}, P_{p}) = conc O_3(T_{p'}, P_{p}) \times \frac{273.15}{T_1} \times \frac{P_1}{101325}$, with T_1 in [K], P_1 in [Pa] Τ,

• mks

Safety

Ozone is a highly toxic, oxidizing gas. It can be assimilated via inhalation, skin and eyes. For detailed information, reference the Ozone Material Safety Data Sheet available from Genium Publishing Corporation.

Material	O₃ Gas	O ₃ Dissolved	Comment
Metals			Metals can suffer severe corrosion
Stainless Steel	+	-	
Silver, Copper-Alloy	-	-	Silver and other metals can destroy ozone catalytically
Inorganic Oxides			
Glass, Quartz	+	+	
Alumina Oxide	+	-	
Fe-, Cu, Mn-Oxide	-	-	Efficient catalyst
Organics			Most organics are severely attacked
PTFE, PFA	+	+	
PVDF, PVC	-	(+)	PVDF/PVC are attacked in gas phase, can be used in drain lines
PP, PE	-	-	
Kalrez [®] , Chemraz [®]	+	+	Seals

Note: Plus sign (+) equals compatible; Minus sign (-) equals incompatible

Ozone Conversion_10/22 ©2004-2022 MKS Instruments, Inc. Specifications are subject to change without notice.

MKS products provided subject to the US Export Regulations. Export, re-export, diversion or transfer contrary to US law (and local country law) is prohibited. Trademarks cited herein are the property of their respective owners.