
Embedded One-Class Classification on RF
Generator using Mixture of Gaussians

Ryan M. Bowen∗, Ferat Sahin†, Aaron Radomski‡, Dan Sarosky‡
∗Microsystems Engineering Department

Rochester Institute of Technology, Rochester, NY USA
Email: rmb3518@rit.edu

†Electrical and Microelectronic Engineering Department
Email: feseee@rit.edu

‡Advanced Development Group
MKS ENI Products

Rochester, NY USA
Email: {dan sarosky,aaron radomski}@mksinst.com

Abstract—In this paper we apply a specific machine learning
technique for classification of normal and not-normal operation
of RF (Radio Frequency) power generators. Pre-processing tech-
niques using FFT and bandpower convert time-series system
signatures into single feature vectors. These feature vectors
are modeled using k-component Mixture of Gaussians (MoG)
where components and corresponding parameters are learned
using the Expectation Maximization (EM) algorithm. Data is
obtained from three different generator models operating under
normal and multiple different not-normal conditions. Exploration
into algortihmic parameter effects is conducted and empirical
evidence used to select sub-optimum parameters. Robust testing
is reported to achieve a 3σ classification accuracy of 95.91% for
the targeted RF generator. Additionally, a custom C++ library
is implemented to utilize the learned model for accurate classifi-
cation of time-series data within an embedded environment such
as a RF generator. The embedded implementation is reported to
have a small storage footprint, reasonable memory consumption
and overall fast execution time.

I. INTRODUCTION

The semiconductor industry’s trend toward larger wafers
(300mm to 450mm) for Integrated Circuit (IC) manufacturing
demands reliable/available process equipment. To minimize
cost of ownership (COO) IC Process tools must not fail
during IC fabrication processes. For example, RF plasma
power sources are critical components used during etching and
film deposition. Thus, the reliability/availability of these power
sources is critical to maximize fab up-time and minimize COO.
Furthermore, the ability to accurately determine a process
tool’s operational condition in vivo has huge potential for cost
saving.

Traditional fault detection systems are based on the ability
to detect deviations from the normal operation of a system.
Based on complexity a realization of an analytical model of
a system may be difficult to define. Thus many techniques
are used that attempt to describe a system through modeling.
Previous work has been done with respect to modeling and
classification of normal and fault conditions for RF Power
generators [1], [2]. Support Vector Machines (SVM), Radial
Basis Function Networks (RBFN) and Novelty detection are

some of the approaches explored by Chandrashekar et al. Their
work in novelty detection through a modified version of the
Novelty Detection Framework (NDF) [3] has been the basis for
the work presented in this paper. The preliminary results from
the modified NDF have demonstrated feasibility and need for
an embedded implementation of fault detection/classification.

This paper focuses on the use of a Mixture of Gaussians
(MoG) and Expectation Maximization (EM) as a machine
learning method for one-class classification of time-series data
from RF power generators. The remainder of the paper will
follow this outline: Section II defines MoG and EM, Section III
explains in detail the proposed method, Section IV described
the embedded implementation/application of the proposed
methods, and Section V summarizes the experimental results
collected.

II. ONE-CLASS CLASSIFIER

One-class classification is a unary clasification technique
where information from one class is used to establish a
boundary between the one class and other classes [4]. With
one-class classification, knowledge of outlying information
may or may not be available. Different methods have been
used to model data for one-class classification. Most cases use
probability densities such as those in Mixture of Gaussians
(MoG). MoG has been used in one-class classification with
fault detection and diagnosis as presented in the Novelty
Detection Framework (NDF) [3]. The remainder of this section
defines MoG and the use of Expectation Maximization (EM)
for learning.

A. Mixture of Gaussians Model

Mixture of Gaussians (MoG) is a density based method
where data is assumed to approximate a Gaussian distribution.
A probabilistic measure may be used to identity target and
outliers, such a measure is:

f (z) = I (p (x) > θp) (1)

where p (z) is the probability of z, θp is the threshold, and I
is a decision function that z is accepted as a target.

A Gaussian density in d-dimensional space, is characterized
by its mean µ ∈ Rd, and d× d covariance Σ, is defined as:

g(x|µ,Σ)=
1

(2π)
d/2|Σ|1/2

exp

(
−1

2
(x−µ)

T
Σ−1(x−µ)

)
(2)

A Gaussian mixture model is formalized as a weighted sum
of k component Gaussian densities as in the equation below:

p (x) =
k∑
i=1

αig (x|µi,Σi) , with

k∑
i=1

αi = 1 and for i ∈ {1, . . . , k} : g (x|µi,Σi) ≥ 1

(3)

B. Expectation-Maximization

Expectation Maximization (EM) is a well known algorithm
[5] that may be used to update the parameters of k-component
mixture. Parameters are updated such that the likelihood of
Xn = {x1, . . . , xn}, with xi ∈ Rd, is not less than the
previous. Basic EM is an iterative process of two steps, an
expectation step (e-step) and a maximization step (m-step) as
defined below. These steps are iterated until convergence.

e-step: Compute posterior probabilities.

wik =
pk (xi|λk) · αk

K∑
m=1

pm (xi|λm) · αm
; 1 < k ≤ K, 1 < i ≤ N (4)

m-step: Compute new parameter values.

NK =
N∑
i=1

wik (5)

αk =
Nk
N

(6)

µk =

(
1

Nk

) N∑
i=1

wik · xi (7)

Σk =

(
1

Nk

) N∑
i=1

wik · (xi − µk) (xi − µk)
T (8)

III. PROPOSED METHOD

The method proposed for using MoG as a one-class clas-
sifier consists of four basic steps listed below and is further
discussed in detail in the following subsections.

1) Data Collection
2) Pre-processing
3) Feature Selection
4) Model Learning

A. Data Collection

The database of pre-classified collected data is separated
into three different sub-sets for training, validation, and robust
testing. The importance of this separation is to use one-
set of data to learn/train an estimated model, then to use
the estimated model on another set of data to validate the

model. The robust data is another set of data not used in
training nor validation to further test accuracy of the estimated
model. Given a collection of data, typical division used is
1/3 training, 1/3 validation, and 1/3 robust. If the data within
the entire data collection has some sub-categorical grouping,
robust data is selected such that entire sub-groups are exempt
from training/validation datasets.

B. Pre-processing and Feature Selection

The data used in this work are collections of sampled time-
series data sets of size n×m, where m is the number variables
and n is the number of samples. Each dataset in this work
will be referred to as as a fingerprint. Looking forward to
the overall application of the proposed method, the fingerprint
is a sampled time-series data set representing a predetermined
cycle of system inputs and their corresponding outputs (system
signature).

The initial step of pre-processing the data is to normalize
the data. For this we use a priori knowledge of maximum
data ranges. Each data point in every row of the fingerprint
is elementally divided by its known maximum value. The
normalization compresses the data to a maximum value of
1.

For this proposed work there is an assumption that the clas-
sification of a fingerprint is related to variations in frequency
components. Thus, the multi-dimensional Fast Fourier Trans-
form (FFT) is applied on each fingerprint to obtain Fourier
coefficients. In foresight of cross-platform implementation an
n-point FFT is used. The n-point FFT specifies that the size
of each 1D FFT computation are padded with zeros to make
the input of size 1×N where:

N = dlog2 (m)e (9)

After performing the n-point FFT of the fingerprint data, the
data is truncated to match the size of the original fingerprint
data (n ×m). Considering the end target platform is an em-
bedded environment, additional pre-processing is performed to
further reduce the size of the data. For this work, we are using
the bandpower of the absolute values of the FFT coefficients.

Choosing the number of elements in each band is dictated
by the desired number of bands and the number of FFT coef-
ficients (n). Our approach to the bandpower evenly distributes
the number of elements in each band. Uneven division is
handled by using slightly more elements within the lower
frequency ranges. The number of elements in each band is
calculated as:

∆ =

⌊
n

β

⌋
(10)

where n is the number of FFT coefficients and β is the desired
number of bands. The number of remaining elements due to
uneven band distribution is:

r = n−∆β (11)

After determining ∆ and r, the actual bandpower per band
is accumulated as:

xb[i]=

∆+1∑
j=1

|xf [(i−1)(∆+1)+j]|, if i<=r

∆∑
j=1

|xf [r(∆+1)+(i−r−1)∆+j]|, otherwise
(12)

where xf is the vector of FFT coefficients, i = 1, . . . , β, ∆ is
the general number of elements in each band, r is the number
of low frequency band containing an extra element, and xb is
the resulting vector with bandpower values.

The final step of the proposed pre-processing is to convert
the 2D dataset into a single feature vector. This is done since
the overall goal is to classify the fingerprint as a whole. Thus,
the 2D dataset of FFT coefficients is reshaped into a single
row-wise vector of size 1× β ·m, where m is the number of
variables in the fingerprint and β is the number of bands used
from the FFT.

After the pre-processing of fingerprint data the result is
a fingerprint expressed as single feature vector. Our ap-
proach to feature selection uses Principle Component Analysis
(PCA)[6]. PCA finds the linear projection of the high dimen-
sional dataset into a lower dimensional space. The number of
features selected (q) is chosen such that 99% of the variance
is retained.

C. Model Learning
After pre-processing and feature selection, the process of

learning and validating a model is performed. This method
uses a k-component MoG model and Verkbeek et. al’s efficient
greedy learning to learn model parameters [7]. Verkbeek
et. al’s greedy method builds a mixture component-wise by
(i) inserting a new component and (ii) applying EM until
convergence. The stopping criterion chosen in this work is
a pre-specified number of components (k). Using a training
dataset, the resulting learned model parameters from Verkbeek
et. al’s greedy method are:

• M(k × q) - mean values of the mixture.
• C(q × q) - co-variance matrix of mixture.
• W (k × 1) - vector of mixing weights.

where q is the number of features in each feature vector of the
training dataset. Here it is important to note that the training
dataset contains only data that has been expertly classified as
normal.

The fitness of the learned model parameters with respect to
a single feature vector (x) is quantified through calculation of
the likelihood that feature vectors belong to the mixture. First
each feature vector’s likelihood of belonging to component k
is determined as:

Lk(x) =
2π−q/2

|Ck|
exp

(
−1

2

√
(x−Mk)C−1

k (x−Mk)
T

)
(13)

Then the log-likelihood that a feature vector belonging to the
entire mixture is:

L(x) =
k∑
i=1

log (Li(x) ·W) (14)

After calculation of each feature vector’s log-likelihood,
a crisp classification decision of normal or not-normal is
achieved via thresholding. For this a threshold value is chosen
based on the variance in log-likelihood values such as:

th = µL − δσL (15)

where µL, σL are the mean/standard deviation of log-
likelihood values and δ may be chosen. Since all training data
is normal, a large δ(> 6) will yield high training accuracy but
may not be suitable for separation of not-normal from normal.
The overall classification accuracy or performance for a dataset
is determined based on number of False Positives (FP) and
False Negatives (FN), as below:

performace =
#FP + #FN

N +NN
∗ 100 (16)

where N and NN are the number of known normal and not-
normal feature vectors in the dataset.

After training of the model parameters, cross-validation is
performed. The validation dataset is separate from training
and contains expertly classified data of both normal and not-
normal data. The learned model parameters (M,C,W) in
addition to the threshold th are used with the validation
dataset. As with validation, robust testing is done on an
additional dataset not used in validation and training. This is
done to mimic the event that new data, not available during the
learning process, is to be classified using the learned model
and parameters.

IV. EMBEDDED SOLUTION

The proposed method was originally implemented using
MATLAB R©computing software because of its ability for rapid
algorithm development and extensive toolboxes and libraries.
However, the end goal is to implement the one-class clas-
sifier within the target embedded system. C++ was chosen
as the language for the embedded implementation for its
speed, multi-platform support, and object-oriented capabilities.
Additionally, no 3rd-parties libraries are used in order to avoid
platform dependencies with additional libraries. Moreover the
C++98 standard was selected for backward compatibility with
legacy systems with compilers that do not support C++0x
standards.

Without 3rd party libraries custom math classes and func-
tions were implemented. Among the custom math classes were
matrices and vectors for real and complex numbers. Mathemat-
ical operators were implemented/overloaded for matrix mul-
tiplication, scalar multiplication/division, element-wise mul-
tiplication/division/addition/subtraction, and transpose. Some
additional operations implemented are n-dimensional sum,
mean, max, min, variance, and co-variance. All operations and
operators were implemented to conform to MATLAB syntax
and validated for output.

A. FFT

The most difficult and computationally exhaustive aspect
of the proposed work is the use of the FFT. There multiple

implementations of the FFT in existence. For initial testing the
generic 2D Discrete Fourier Transform (DFT) were used. The
computation of the 2D DFT was done as follows:

F [u, v] =
1

MN

M−1∑
m=0

N−1∑
n=0

f [m,n] e−j2π(k
Mm+ 1

N n) (17)

where f is a sampled periodized signal with size (M × N)
and F is the transformed signal with u = 0, . . . ,M − 1 and
v = 0, . . . , N − 1. The DFT was implemented and tested
against MATLAB output.

However, the DFT is very slow considering the 1D DFT
has a time complexity of O(N2). Therefore, the Fast Fourier
Transform FFT was considered since it is able to reduce the
time complexity in 1D to O(NlogN). The Cooley-Tukey
implementation of the FFT was selected and implemented
using C++. The particular implementation uses a recursive
function in combination with a reference variable as listed
in Algorithm 1. The 2D form of the FFT is done by using the
1D FFT row-wise then column-wise.

Algorithm 1 Cooley-Tukey Recursive FFT Algorithm
1: function FFT(&x) . reference to complex array
2: N ← length(x)
3: if N ≤ 1 then
4: return 1
5: end if
6: . Divide into even/odd
7: even← x[0, 2, . . . , N − 1]
8: odd← x[1, 3, . . . , N − 1]
9: . Conquer

10: FFT(even)
11: FFT(odd)
12: . Combine Results
13: for k = 0 to N/2 do
14: t← exp(−2πk/N) ∗ odd[k]
15: x[k]← even[k] + t
16: x[k +N/2]← even[k]− t
17: end for
18: end function

B. Architecture

The purpose of the embedded implementation of the MoG
one-class classifier is to provide functionality for a system
to collect fingerprint data and determine if the system is
operating under normal or not-normal conditions. According to
the proposed method as described in Section III, this requires
data collection, pre-processing, feature selection, and model
learning.

For the embedded implementation many of the system
variables are obtained offline as seen in Fig. 1. Most im-
portantly the k-component MoG is obtained from offline
learning conducted in MATLAB. Where the model is defined
by a (k × q) mean matrix M , (q × q) co-variance matrix
C, and (1 × k) weight matrix W ; with q being the number
of selected features resulting from PCA. In addition to the

Offline(Processing(

C,,(Embedded(CodeC,,(Embedded(Code

Fingerprint(Data
CSV(Format

Fingerprint(Data
CSV(Format

MATLABMATLAB

Preprocess
XFFT,Bandpowerj

Preprocess
XFFT,Bandpowerj

Feature(Extraction
XPCAj

Feature(Extraction
XPCAj

Machine(Learning(
XOne-Class(MoGj
Machine(Learning(
XOne-Class(MoGj

Data(CollectionData(Collection

Data(CollectionData(Collection

X(ProjectionX(Projection

One-Class(
XMoGj

One-Class(
XMoGj

PreprocessingPreprocessing

NORMAL
or

NOT NORMAL

NORMAL
or

NOT NORMAL

Wp

W#(M#(C#(th

Xmax #(β

uFFT(Bands(- β
Threshold(Scale(- δ

uFFT(Bands(- β
Threshold(Scale(- δ

Fig. 1. Block diagram of the embedded system implementation in combina-
tion with offline (pre-processed) data.

model information, algorithmic and pre-processing parameters
are determined offline and hard-coded. These other parameters
include: maximum values for the data, number of FFT bands
(β), PCA matrix, and a learned threshold value th. The overall
algorithm of the embedded implementation is described in 2.

Algorithm 2 Embedded MoG One-Class Classifier
1: . fingerprint data, processing and model parameters
2: procedure ONE-CLASS(x, β,Wpca,M,C, th)
3: xn ← normmax(x) . Normalize by max values
4: xfft ← abs(FFT (xn, n)) . abs of n-point 2D FFT
5: xb ← bandpower(xfft, β) . Compute bandpower
6: xr ← reshape(xb) . Reshape to array
7: xproj ← xb ∗Wp . Feature selection
8: xl ← likelihood(xproj ,M,C) . Calculate likelihood
9: if xl ≥ th then

10: return 0 . Normal
11: else
12: return 1 . Not-Normal
13: end if
14: end procedure

V. EXPERIMENTAL RESULTS

Primary focus of the experimental results was with the
MKS R©LVG3527 27MHz RF generator. Fingerprint data was
collected from other generators including the MKS LVG3560
60MHz and MKS Keinos 2MHz RF generators. Fingerprint
data was collected while generators were operating under
known normal conditions as well as some non-normal or
faulty conditions. For the MKS LVG3527 27MHz and MKS
LVG3560 60MHz models, faulty data was seeded from known
faulty condition as listed below:

1) Lacking Solder on PA FET
2) Suspect PA
3) Lacking Solder on Resistor

TABLE I
DATA, VARIABLE, AND SAMPLE COUNTS FOR FINGERPRINT DATA USED IN

OFFLINE MODEL LEARNING.

RF Generator Fingerprint Count Vars SamplesNormal Faulty
MKS LVG3527 27MHz 2037 1259 33 220
MKS LVG3560 60MHz 2343 686 33 220

MKS Keinos 2MHz 1292 0 29 220

The total number of fingerprints are summarized in Table
I as well as the total number of variables and samples per
fingerprint. There was no fault data currently available for the
MKS Keinos 2MHz models.

The process of data-collection, pre-processing, feature se-
lection, and model learning was done as discussed in Section
III. The overall process is dependent on a set of parameters
including: number of FFT bands (β), PCA variance, number of
Guassian components (k), and EM likelihood threshold value
(th). The PCA variance was fixed to be 99% and the other
values determined based on experimental trials and changing
one factor at a time. For all of the experimental results listed,
the data was shuffled and each data point reported is the result
of 1000 trials.

A. Factor Selection

Using the MKS LVG3527 27MHz RF generator’s data, the
number of bands for FFT β and EM likelihood threshold value
th were the first parameters explored. For this, the number of
components was fixed to k = 1 and number of FFT bands
varied β = [10, 20, . . . , 100]. From Fig. 2, it can be seen that
a th with values µ − σ and µ − 2σ have poor classification
performance. However th values of µ− 3σ and µ− 6σ have
very high classification performance with 3σ classification
accuracy near 95%. Fig. 3 provides a closer looker at the
classification accuracy with respect to False Positive (FP) and
False Negative (FN) counts. From Fig. 2 and 3 for the MKS
LVG3527 27MHz RF generator data, the best number of FFT
bands is β = 60 and th = µ − 3σ; this is where the number
of FP are minimized.

After determining β and th, the number of Guassian com-
ponents k was explored. By fixing β = 60 and th = µ−3σ, k
was varied with k = [1, 2, . . . , 30]. Fig. 4 shows the 3σ robust
classification accuracy, where the best accuracy has k = 11.

B. Robust Performance Results

As described in Section III, the data selection process during
model learning splits the data into three sets for training,
validation, and robust testing. The training data is used to train
the MoG and the validation and robust data are used for testing
the model. With respect to the RF generator data, the robust
data-set is selected such that it contains data from generators
that are not used in training or validation, to mimic using the
learned model on a new generator not used in off-line training.
From the factor exploration results in Section V-A obtained
using data from the MKS LVG3527 27MHz RF generator,
parameters of β = 60, th = µ−3σ, and k = 11 were selected.

50

55

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100

;3
σk

KR
ob

u
st

KC
la

ss
if

ic
at

io
n

KA
cc

u
ra

cy
K;

5
k

NumberKFFTKBands

RobustKClassificationKAccuracyKvs.KFFTKBands
MKSKLVG3560KRF;KkK=K1

th = μ - σ

th = μ - 2σ

th = μ - 3σ

th = μ - 6σ

Fig. 2. 3σ robust classification performance with respect to number of
FFT bands (β) and threshold value (th). Results are for single Gaussian
component (k = 1) for the MoG and reported value from 1000 runs of
shuffled data.

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 70 80 90 100

F
al

se
SP

os
it

iv
eS

/SF
al

se
SN

eg
at

iv
eS

C
ou

n
t

NumberSFFTSBands

RobustSFalseSPositivesSandSFalseSNegativesSvs.SFFTSBands
27MHzSMKSSLVG3560SRFSGenerator;SkS=S1

th = μ - σ (FP)

th = μ - 3σ (FP)

th = μ - 6σ (FP)

th = μ - 3σ (FN)

th = μ - 6σ (FN)

Fig. 3. False Positive (FP) and False Negative (FN) counts with respect to
number of FFT bands (β) and threshold value (th). Results are for single
Gaussian component (k = 1) for the MoG and reported value from 1000
runs of shuffled data.

86

87

88

89

90

91

92

93

94

95

96

97

0 5 10 15 20 25 30

G3
σ5

7R
ob

us
t7

C
la

ss
if

ic
at

io
n

7A
cc

u
ra

cy
7G

S
5

Number7of7Components7Gk5

Robust7Performance7vs=7k;Components
27MHz7MKS7LVG35607RF7Generator;7β =760;7δ=3

Fig. 4. 3σ robust classification performance with respect to number of
Gaussian components k with number of FFT bands (β = 60) and threshold
value (th = µ− 3σ; δ = 3). Reported values are from 1000 runs of shuffled
data.

TABLE II
AVERAGE AND STANDARD DEVICE OF ROBUST PERFORMANCE AND
FP/FN COUNTS COLLECTED OVER 1000 RUNS OF SHUFFLED DATA.

RF Generator Feat Robust Testing
MKS Performance FP FN

LVG3527 56 98.70 (0.93) 8.69 (8.04) 2.82 (4.2)
LVG3560 44 99.03 (1.24) 1.46 (2.58) 5.63 (8.26)

Keinos 2MHz 61 92.32 (6.51) 0.00 (0.00) 24.53 (20.93)

These parameters were then used to train, validate and perform
robust testing on data from each of the three models, the
performance results are listed in Table II. The results in
Table II, are averages and standard deviation over 1000 trials,
also listed are the number of features selected as a result of
using PCA. The MKS LVG3527 27MHz and MKS LVG3560
60MHz were reported high performance even considering the
parameters may not be optimum for the 60MHz model as
they were chosen based on 27MHz data. The MKS Keinos
2MHz performance was significantly less with a higher std.
This is most likely due to difference in variable count and
potentially non-optimal parameters. From the results in Table
II, it is suggested that parameters should selected/optimized
per model. However, note that 0 FP were reported for the
MKS Keinos 2MHz model, which is to be expected when no
faulty data is used in training.

C. Embedded Results

For testing of the embedded implementation of the one-
class classifier the chosen platform was a BeagleBone Black
(BBB) with a 1-GHz SitaraTMARM R©Cortex-A8 running a 32-
bit Ubuntu 13.04 distribution. The OS was set to run on the
BBB’s embedded memory (eMMC) which offers a total of
2GB of space. The embedded code developed in this work
was compiled with g++ 4.7.3 with C++98 standard and no
extra optimization. Since the BBB is not one of the RF
generators, fingerprint data files were uploaded to the BBB
to simulate data collection. The one-class classifier read the
data files then performed the algorithm and output to console
classification of the file(s) as normal or not-normal. The
resulting implementation classification output matched that of
the MATLAB version.

Within an embedded environment importance is placed on
code footprint (static memory required), dynamic memory,
and speed of execution. Table III is a summary of recorded
memory footprints and execution time. Execution time is the
total time to classify a fingerprint, which includes time to
read fingerprint data from a file as well as model information.
The dynamic memory was determined by monitoring process
memory consumption and recording the maximum memory
consumed during execution. Reported measures are based
on the model using a single Gaussian component (k = 1),
future testing will include multiple components. Based on the
memory analysis there exists no physical constraints for the
code to be ported over to an RF generator.

TABLE III
EMBEDDED IMPLEMENTATION’S CODE FOOTPRINT, MEMORY USAGE AND

ALGORITHM EXECUTION TIME.

Total Execution Time 600ms - 950ms
Model Information Footprint 113KB

Source Code Footprint 60KB
Executable Footprint 76.8KB
Total Code Footprint 250KB

Dynamic Memory Usage 1.1MB

VI. CONCLUSION

The proposed work is an implementation of a one-class
classifier using MoG. The algorithm has been tested against
time-series (fingerprint) data collected from three different
MKS RF generators models. Preliminary results are promising
demonstrating high 3σ robust classification accuracy (> 95%).
It has been demonstrated that algorithmic parameter selection
is an important aspect, especially threshold selection.

Offline model training was conducted with code develop-
ment in MATLAB. The MATLAB implementation has been
converted to C++ and has been tested on an embedded plat-
form. Using an off-line trained MoG and other supporting pa-
rameters, the embedded implementation has been completed.
The execution time (< 1sec), code footprint (205KB), and
memory requirement (1.1MB) have been reported and are
reasonable for most modern embedded platforms.

Future work will focus on optimization of algorithm pa-
rameters, where additional machine learning techniques and/or
statistical analysis will be used to select parameters. The
parameter selection and performance will be compared against
other time-series data-sets that are well known within the
classification field. After optimization of such parameters, on-
line MoG model learning will be explored as a robust in vivo
health monitoring system for embedded systems.

ACKNOWLEDGMENT

This work was supported by MKS ENI Products.

REFERENCES

[1] G. Chandrashekar and F. Sahin, “In-vivo fault prediction for RF gener-
ators using variable elimination and state-of-the-art classifiers,” in 2012
IEEE International Conference on Systems, Man, and Cybernetics (SMC).
Seoul, Korea: Ieee, Oct. 2012, pp. 1800–1805.

[2] G. Chandrashekar, F. Shain, E. Cinar, A. Radomski, and D. Sarosky, “In-
Vivo Fault Analysis and Real-Time Fault Prediction for RF Generators
using State-of-the-art Classifiers,” in 2013 IEEE International Conference
on Systems, Man, and Cybernetics, Manchester, UK, 2013.

[3] D. P. Filev, R. B. Chinnam, F. Tseng, and P. Baruah, “An Industrial
Strength Novelty Detection Framework for Autonomous Equipment Mon-
itoring and Diagnostics,” IEEE Transactions on Industrial Informatics,
vol. 6, no. 4, pp. 767–779, Nov. 2010.

[4] R. Tax, DavidM.J. and Duin, “Combining One-Class Classifiers,” in
Multiple Classifier Systems, ser. 2096, F. Kittler, Josef and Roli, Ed.
Springer Berlin Heidelberg, 2001, pp. 299–308.

[5] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical
Society . Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[6] E. Alpaydn, Introduction to Machine Learning, 2nd ed. Cambridge,
Massachusetts: The MIT Press, 2010.

[7] J. J. Verbeek, N. Vlassis, and B. Kröse, “Efficient greedy learning of
gaussian mixture models.” Neural computation, vol. 15, no. 2, pp. 469–
85, Feb. 2003.

