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Abstract 
 

We describe a new method of point-of-origin quality 
detection for injection molding systems. The method 
encompasses data acquisition, Multivariate modeling, 
reject control and data reporting, provides in-line quality 
detection of injection molded parts, and real-time reports 
on fault contributors. We discuss real-world production 
applications in which MVA is applied using real-time 
molding parameters to predict quality, with a goal of 
Parametric Release. 

 
 
 

Introduction 
 

The current quality control techniques for injection 
molding that are in place within the Medical Device 
Community (i.e. AQL-based lot sample inspection, 
Statistical Process Control (SPC), etc) do not adequately 
prevent defective parts from continuing on through the 
manufacturing process. SPC methodologies for example, 
typically monitor control charts for 3σ excursions as a 
measure of out-of-control processes. Invariably, waiting 
for the detection of a 3σ excursion results in a loss of 
product. Univariate analysis-based fault detection 
methodologies are also plagued with high false alarm 
rates. Additionally, univariate SPC techniques do not take 
into account parameter interactions and correlations. 

 
The impact of the failure of conventional QC 

methods for real-time defect capture and rejection is 
significant in terms of downstream production time, cost 
and recovery, as well as regulatory impact. The overall 
cost to production is magnified many times relative to the 
cost of defect capture at or near the point of origin for 
injection molding systems. There exist Statistical Process 
Control (SPC) systems for injection molding tools that 
contain the option to integrate mold cavity sensors and 
such can help to reduce the numbers of defective units 
released to downstream processing and these provide 
documented benefits. These systems do not, however, 
explain the source of the process variation, and only give 
an indication of what is actually occurring in the mold 
cavity.  In order to obtain true parametric release, the 
source of the variation must be understood and controlled. 
The addition of Multivariate Analysis (MVA) processing 

to these solutions is needed to realize the greatest 
processing advantages and true Parametric Release in 
parts and processes. MVA analysis of an injection 
molding process can provide critical improvements in 
injection molding processing including: 

 
a) More accurate and precise fault detection than 

can be achieved using conventional SPC 
b) The ability to clearly monitor all variables 

simultaneously 
c) Clear views of process drift 
d) Real-time identification of those variables most 

strongly contributing to a fault 
e) Real-time, in-line rejection capability 
f) Fewer false rejects than are observed when using 

SPC alone 
g) Increased productivity in terms of 

troubleshooting and problem diagnosis 
 

MVA technology [1-3] is the science of separating 
the signal from the noise in data with many variables and 
presenting this data in a simple graphical format. A key 
advantage of this technology is the ability to take large, 
unwieldy data sets and reduce them to simple model 
representations that can be readily understood and 
employed for quality control purposes. In MVA 
technology real-time process data is used to create a 
“current” process model which is numerically contrasted 
with a previously established “known good” process 
model. The results of this numerical comparison are two 
relatively simple decision statistics, DModX and 
Hotelling’s T2; and these define the nature and extent of 
observed deviations in the current process from the 
established “good” process model. The greater the 
numeric value of Hotelling’s T2, the more likely it is that 
the current data deviates significantly from the model and 
that the product is “out of spec”. The larger the value of 
DModX, the greater the likelihood that the current data is 
influenced by factors or in patterns not present when the 
original model was formulated.  

 
In this report, we describe the incorporation of MVA 

methodologies into Quality Control for Fault Detection 
Analysis (FDC) in the injection molding of medical 
device components. We describe the use of this 
methodology for the achievement of improved process 
understanding, for real-time identification and rejection of 



defective parts and for assistance in the identification of 
corrective action determinations.   

 

 
System Description 

 
This study employed an MKS SenselinkTM QM module 
for data acquisition and MVA computing. The module is 
equipped with a web browser interface and has on-board 
data storage and result outputs. The unit was mounted in 
the control cabinet of an injection molding press (Figure 
1). During the manufacturing process cycle, this module 
continuously records key process variables including, but 
not limited to:  
 
Analog Inputs: 

a) Temperatures – nozzle and zones 
b) Pressures – fill and pack 

 
Digital Inputs: 

c) Timing events – mold, fill and pack 
d) Shot Position 

 
Optional Inputs: 

e) Cavity pressure and mold sensors 
f) Area Sensors – i.e. ambient temperature, 

humidity 
g) Ancillary devices – water temperature and dryer 

 
Raw data and MVA/FDC results were stored locally 

on the module and accessed using the web-based user 
interface. The results are also available as controller 
feedback, signals for product accept/reject, and can be 
sent to network data vaults.  
 

Model Building Procedure 
 

Data collection commenced following installation of the 
module, connection of the signals from the sensors 
monitoring the key process variables and user-based 
variable selection. The selected data was collected over 
the entire molding process (mold open to mold open). 
Initially, 9 – 17 trials that were based on a Scientific 
Injection Molding approach [4,5] were performed to 
ensure a robust, flexible model. According to Bozelli [6] 
in Scientific Injection Molding: “Molding strategies are 
based on the four key processing variables each 
scientifically established: 
 

1. Plastic Temperature  
2. Plastic Flow Rate  

3. Plastic Pressure  
4. Cooling Rate and Time 

 
Design of Experiments (DoE) was used to define relative 
variable contributions and correlations, and a PCA model 
was built from the DoE data. In this manner, the pattern of 
the normal operating conditions was defined. Once the 
initial model was built, each injection molding cycle can 
be compared with the reference process model. The 
results of this comparison are the DModX and Hotelling’s 
T2 statistics. For this study, baseline data from 1000 
cycles within the 9-17 run matrix was collected and used 
to define DModX and T2 alarm levels for part 
accept/reject logic. 

 
Case Studies 

 
In order to test the effectiveness of the MVA system for 
FDC in injection molding, intentional faults were created 
on a molding tool. The data were then analyzed offline in 
order to correlate alarms with the actual process 
contributors to each fault. Figure 2 shows the DModX 
response of the MVA system to this process and to the 
induced faults. The plot displays one DModX value 
calculated per injection molding cycle and is thus a time-
series of the DModX statistic for the process. The 
baseline data showed that an appropriate alarm level in 
this case is a DModX value of 1.509.   

 
The characteristic and timing of the induced faults to 

the molding cycle was: 
 

• 13:15 PM:  Slight short shot 
• 13:30 PM: Large short shot 
• 13:41 PM: Slight amount of flashing 
• 13:54 PM: Large amount of flashing 
• 14:06 PM: Simulated double shot by 

closing on part. 
 
Figure 2 displays the DModX plot for the injection 

molding process over the span of time that includes the 
period in which the faults were introduced. This statistic 
clearly responds dramatically as each process error is 
induced; and it is apparent that different kinds of faults 
give rise to different magnitude and form in the DModX 
response.   

 

 
 
 



 
 

A key characteristic of the MVA system is its ability 
to “drill down” through the data and identify fault 
contributors once the fault has been recognized. Figure 2 
shows the onset of each particular fault type to correlate 
with a particular cycle (recall that in the DModX plot, the  
points on the X-axis each correspond to one cycle in the 
injection molding process). Each point along this axis has 
an associated contribution plot containing values for each 
of the key variables in the process. Figure 3 shows the 
contribution plot associated with the cycle in which short 
shots were intentionally introduced into the process. The 
plot in Figure 3 shows that, of the variables monitored in 
this process, two showed significant deviation from the 
normally accepted model values. The injection pack 
pressure is seen to be significantly below its expected 
value during the short shot excursion while the shot 
cushion shows a small but significant positive deviation 
from its expected value.  Figure 4 shows the contribution 
plot associated with the cycle in which flashing was 
introduced to the process. Again, injection pack pressure 
and shot cushion are seen to be the primary deviations 
from the reference model, but in this case the former 
shows positive deviation from the expected value while 
the latter is negative. Figure 5 shows the contribution plot 
associated with the cycle in which the simulated double 
shot occurred. In this plot a different pattern of deviations 
from expected values is observed than for either short 
shots or flashing. 
   

The DModX approach thus shows not only 
alarms, but also provides information on the kind of alarm. 
The combined use of the DModX plot with the 
Contribution Plots DModX provides information on the 
correlation structure breaks in the alarm. The breakdown 
in the pattern of variables is readily apparent in the 
correlation plots and the pattern of the breakdown is 
indicative of the characteristics of the fault that has 
occurred in the process. This identification of fault 
characteristics is a key concept of multivariate analysis. 
The methodology monitors not only the value of a variable 
but also how it relates to other variables in the process.  
 
 
When the correlation structure / relationship breaks down, 
MVA detects the break. Such relational breaks are not 
detected using univariate analysis (UVA), since UVA 
assumes that all variables are independent. This 
assumption is not valid in systems where process variables 
are correlated (most systems). 

Results 
 

The use of MVA analysis provides a key advantage in 
process control. With MVA in place, it is possible to 
automatically identify defects such as short shots, double 
shots and excess flash. Once these defects have been 
identified by the system, it is feasible to automatically 
divert suspect product and avoid further product loss 
through downstream product defects that are directly 
correlated with the original defect. This improves 
productivity, reduces potential financial penalties and 
decreases the need for inspection resources. 

 
This study shows that it is possible to identify those 

process parameters that contribute to suspect product and 
to reduce problem identification and correction 
time/prevention time through the use of MVA methods in 
the injection molding of medical parts. Stability and control 
of this process has been significantly improved through the 
increase in process knowledge, resulting in increases in Cp 
and Cpk values of, typically, 9%. In the long term, it 
should be possible to build libraries of defect 
classifications to assist with a broad range of issue 
classifications and resolutions. 
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Figure 1. 
The data collection and analysis configuration employed in this study. 

 
 
 
 

  
 

Figure 2. 
DModX plot for injection molding process showing the onset of errors in the process and the associated alarm levels in 

the DModX statistic. 



 

 
Figure 3. 

Contribution plot for the onset of short shots. 
 
 
 
 
 
 
 
 
 

Figure 4. 
Contribution plot for the onset of flashing 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 
Figure 5. 

Contribution plot for the simulated double shot. 


