

AMBIENT AIR ANALYZER FOR CONTINUOUS DETECTION OF HAZARDOUS PRODUCTION MATERIALS (HPM) AND TOXIC INDUSTRIAL CHEMICALS (TIC)

RAPID RESPONSE • VERY LOW DETECTION LIMITS • MULTIPLE GASES SIMULTANEOUSLY

The MKS AIRGARD ambient air analyzer is an ultra-sensitive, Fourier Transform Infrared Spectroscopy (FTIR) based gas analyzer designed to rapidly detect toxic gases. The analyzer is capable of detecting parts per billion (ppb) levels of most HPMs and TICs below Threshold Limit Values (TLV) and/or Immediately Dangerous to Life or Health (IDLH) levels within 20 seconds.

The AIRGARD analyzer has been thoroughly tested by the Department of Defense for its sensitivity, specificity, response time, and immunity to false positive alarms caused by the sensing of, and alarming to, everyday benign, non-toxic solvents and industrial chemicals. This immunity to false alarms prevents unwarranted evacuation of buildings, associated interruptions of business and emergency notifications when no toxic materials are present.

Features & Benefits

- Single-digit ppb detection limits ability to discriminate and alarm to a broad range of toxic materials.
- Rapid response typical time to alarm and identify toxic gases < 20 seconds
- Monitor and individually speciate up to 50 gases simultaneously
- Flexibility to easily modify analysis method to add or remove gases
- Automated, stand-alone operation selfcontained analyzer with embedded computer and sampling pump
- Low cost of ownership no annual consumable costs
- Large reference library 375+ gases with customer gas additions available.

Applications

- Continuous detection of HPMs and TICs
- Airborne Molecular Contamination (AMC)
- Emergency Response (ERT) gas monitoring
- Ambient air, exhausted enclosures, abatement systems, gas delivery (gas cabinets and VMBs)
- Semiconductor, Solar, LED manufacturing
- Research laboratories University, Government, Nanotech

Specifications

Measurement Technique FTIR Spectrometry

Measureable Gases Nearly all organic and inorganic gases except diatomics and noble gases

(H₂, F₂, Cl₂, N₂, O₂, Br₂, He, Ne, Ar, Kr, Xe)

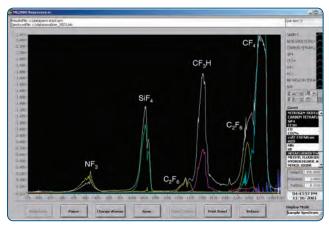
Ranges Concentration settings between 1ppb and 100% full scale

Fittings/Connections 3/8" Swagelok®

Tubing ¼" Stainless steel and Tygon®

Installation 19" Wall mount chassis

Operating Dimensions 18.4" (W) x 25.4" (H) x 7.5" (D) [46.7 x 64.5 x 19.1 (cm)]


Operating Weight 75 lbs. [34.1kg]

Operating Temperature/Humidity 10-40°C / up to 65% RH

Power 120 or 240 VAC, 50/60Hz, 3 amps

Laser Safety Class 1 laser product contains a Class 3R laser with continuous wave output at 850 nm

IR Spectrum of Semiconductor Stack

The AIRGARD FTIR can speciate (differentiate) similar molecules simultaneously.

Detection Limits

Example low-level detection limits for typical gases in the absence of interfering species:

Name	Formula	Detection Limit Ranges 10 sec. measurement*
Ammonia	NH ₃	7 – 35 ppb
Arsine	AsH ₃	5 – 25 ppb***
Benzene	C_6H_6	90 – 450 ppb
Boron Trichloride	BCI ₃	5 – 25 ppb
Boron Trifluoride	$BF_{_3}$	80 – 400 ppb**
Carbonyl Sulfide	COS	15 – 75 ppb
Diborane	$B_2^{}H_6^{}$	5 – 25 ppb
Dichlorosilane	SiH ₂ Cl ₂	5 – 25 ppb
Germane	GeH₄	5 – 25 ppb***
Hexafluoro-1,3 butadiene	C ₄ F ₆	10 – 50 ppb
Hydrogen Bromide	HBr	65 – 325 ppb
Hydrogen Chloride	HCI	20 – 100 ppb
Hydrogen Fluoride	HF	12 – 60 ppb
Nitric Oxide	NO	5 – 25 ppb**
Nitrogen Fluoride	NF ₃	5 – 25 ppb
Octafluorocyclopentene	C ₅ F ₈	5 – 25 ppb
Ozone	$O_{_{3}}$	12 – 60 ppb
PGMEA	$C_6H_{12}O_3$	20 – 100 ppb
Phosphine	PH ₃	20 – 100 ppb***
Silane	SiH ₄	7 – 35 ppb
Silicon Tetrachloride	SiCl ₄	380 ppb – 2ppm
Silicon Tetrafluoride	SiF ₄	5 – 25 ppb
Tetraethoxysilane	TEOS	5 – 25 ppb
Toluene	C ₇ H ₈	60 – 300 ppb
Trichlorosilane	SiHCl ₃	5 – 25 ppb
Tungsten Hexafluoride	WF ₆	8 – 40 ppb
o-Xylene	C ₈ H ₁₀	20 – 100 ppb

Lowest detection limits will vary based on application specific anomalies in background air
Dependent on H₂O levels in air
Dependent on spectral regions used for analysis

Ordering Information

Please contact your MKS Sales office for price and availability information.

AIRGARD_HPM_TIC - 10/17 © 2012-2017 MKS Instruments, Inc. All rights reserved.

MKS Instruments, Inc. **Global Headquarters**

2 Tech Drive, Suite 201 Andover, MA 01810

Tel: 978.645.5500 Tel: 800.227.8766 (in USA) Web: www.mksinst.com

MKS Instruments, Inc. **Process & Environmental Analysis Solutions**

651 Lowell Street Methuen, MA 01844

Tel: 978.645.5500

AIRGARD® products may not be exported to many end user countries without both US and local government export licenses under ECCN 1A004.

Specifications are subject to change without notice. AIRGARD® is a registered trademark and mksinst™ and BRIK™ are trademarks of MKS Instruments, Inc., Andover, MA. Swagelok® is a registered trademark of Swagelok Marketing, Co, Solon, OH. Viton® is a registered trademark of E I Dupont Co, Wilmington, DE. Tygon® is a registered trademark of Saint-Gobain